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Abstract. A well known connection between first-passage probability of random walk and
distribution of electrical potential described by Laplace equation is studied. We simulate random
walk in the plane numerically as a discrete time process with fixed step length. We measure
first-passage probability to touch the absorbing sphere of radius R in 2D. We found a regular
deviation of the first-passage probability from the exact function, which we attribute to the
finiteness of the random walk step.

1. Introduction
Connection between stochastic processes and boundary value problems is well known. A
Brownian motion is a classical example of continuous time stochastic process and it was shown by
Einstein [1] that a collective motion of many Brownian particles is governed by diffusion equation.
Let B be a domain in the plane with boundary ∂B. Assume we have a Brownian particle that
starts walking from some position r0, and the boundary ∂B is absorbing which means that once
a walker hits the boundary the walk is terminated. The time-dependent behavior of Brownian
particle is described by diffusion equation:

∂ρ(r, t)
∂t

= D∇2ρ(r, t) (1)

with the boundary condition ρ(r, t) = 0, r ∈ ∂B and initial condition ρ(r, t = 0) = δ(r − r0).
If we are interested only in time-independent properties, e.g. first-passage probability,

integration over time gives Laplace equation [2]

D∇2ϕ(r) = −δ(r − r0). (2)

Equation (2) describes distribution of electrical potential ϕ created by a point charge located at
r0. The absorbing boundary condition in diffusion equation translates to the condition that a
boundary ∂B is grounded, ϕ(r) = 0, r ∈ ∂B.

These connection allows one to analytically investigate Brownian motion by solving either
diffusion equation or Laplace equation.

Vise-versa, these connection could be used to numerically solve some boundary value
problems. It was shown by Kakutani [3] that solution of the equation

∇2u(x) = 0, x ∈ B (3)



with the boundary condition
lim
y→x

u(y) = g(x), x ∈ ∂B (4)

at some point x could be found as an expected value of g(t), t ∈ ∂B for a random walk starting
at x, and t being its first exit point.

Monte Carlo methods for boundary-value problems have several advantages. They are
efficient for estimation of the function u(x) at some point x. Monte Carlo simulations
also have good performance for complex boundaries like fractals, and especially effective in
high dimensional space. In addition, the parallel simulation of multiple random walks is
straightforward and easy in implementation.

Special care should be taken while simulating random walks. In the study of the fractals
formation by successive aggregation of random walks, e.g. diffusion limited aggregation (DLA)
model [4], the domain B is not bounded and diffusing particle is allowed to go infinitely far
away. It is known that in 2D an escape probability is zero. In other words, all diffusing particles
will be finally attached to DLA cluster after some time. This time can be infinitely large, and
in practice one have to halt simulation if random walk goes at some large distance. For this
purpose killing boundary of some big radius around the DLA cluster is used, and these may
lead to the explosive growth of cluster in one direction. To avoid these unnecessary effect, the
killing-free algorithm was proposed [5, 6], which allows to take into account the infinite boundary
conditions exactly.

Discrete time random walk is easy to simulate but finite step of the random walk produces
some bias. It was shown in [7] that particles undergoing discrete-time steps in three dimensions
are captured with probability which is different from the probability generated with the
infinitesimally short steps, and difference does depend on the root-mean square distribution
of step length.

In the paper we present results of the simulations of the random-walk in the plane and propose
regular form of the first correction to the first-passage probability which is due to the finite step
of the random-walk.

2. Simulation algorithm
Let us consider particle at the point (Rb, 0) in the plane at the distance Rb from the center of
absorbing circle of radius R as illustrated in the Figure 1.

Particle at each time step jumps on the length δ in random direction. The random walk is
symmetric thus directions of jumps are distributed uniformly. Particle position is continuous
variable thereby such a process is the discrete time random walk in continuous space. If after
making a move particle is inside the circle R at position (r cosφ, r sinφ), r < R then it is assumed
absorbed at position given by angle φ. For simplicity we assume that (R− r) ∼ δ and δ � 1 so
the difference in real absorption position and position after the last jump is negligible.

Probability Pexp(φ) for a particle to be absorbed at the angle φ is measured numerically. We
compare it with analytic solution found by solving Laplace equation:

P (φ) = 1
2π

x2 − 1
x2 − 2x cosφ+ 1 (5)

where x = Rb/R > 1 (see for details Reference [5]).
Expression (5) can be interpreted as a first passage probability for a particle starting at the

distance Rb from the center of absorbing circle R. At the same time, it could be used to speed up
simulation to deal with fly-away particles problem. The most trivial way to deal with particles
that have gone far from the absorbing circle R is to kill them. But this introduces an error in
simulation and should be avoided. The correct way to solve problem, is to use expression (5)
which allows us to return went away particles back to the simulation region. In our simulation
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Figure 1. Illustration of the random walk in the plane. Random walk of the particle starts at
the birth circle of radius Rb. Particle terminates while touching the absorbing circle of radius R.
If particle cross returning circle Rr it is returning back to the birth-circle at the corresponding
angle (see Expr. 5) and discussion in the text.

if particle goes out of Rr, Rr � Rb, it is returned back to Rb with probability (5) and angle is
counted relative to the line connecting the particle position and the center of absorbing circle.
In order to generate random variable φ with distribution (5) one can use the following mapping

φ = f(u) = 2 arctan
(
x− 1
x+ 1 tan uπ2

)
, (6)

where u is a uniform random number, u ∈ [−1, 1], and x = Rb/R > 1. See [9] for details. The
killing-free algorithm effectively makes simulation region infinite which results in the correct
account of the boundary condition.

Since we study the influence of finite jump length and we measure first-passage probability
numerically and compare it with analytical solution given by Eq. (5), application of the same
formula during the simulation should be done with care. To minimize this influence we must
ensure that (Rb −R)� δ and (Rr −Rb)� δ.

In the next section, we simulate random walk for different sets of parameters, estimate
probability distribution Pexp(φ), and study its deviation from the exact result P (φ).

3. Simulation results
For calculation Pexp(φ), we divide interval of the possible values of φ [−π : π] into 100 bins and
count number of hits for each bin. Normalizing results over the total number of random walkers
N and over the bin size gives estimation of the hitting probability Pexp(φ).

Comparison of experimental result with analytical is presented in Figure 2. Data in the left
panel is for the relatively small number of runs N = 104 while data in the right panel is for the
larger number of runs 106. Fluctuations become not visible on the scale of the figures for the
large enough number of runs demonstrating quality of the data. At the same time, it comes



clear, that there are some deviations of the measured in experiment probability function Pexp(φ)
from the exact one.

Experiment
Analytical expression

φ

Figure 2. Comparison of the estimated probability Pexp with the exact probability P (φ) in
Expr. (5). Left: Parameters are N = 104, R = 10, Rb = 20, Rd = 200, δ = 1. Right:Parameters
are N = 106, R = 10, Rb = 20, Rd = 200, δ = 1.

In order to make deviations more visibly pronounced we compute the relative deviation of
the estimated probability Pexp from the exact probability P (φ)

f(φ) = Pexp(φ)− Pexact(φ)
P (φ) . (7)

We estimate fi(φ) from N = 106 runs, repeat this simulation M times, and calculate an
average

〈f(φ)〉 =
∑M
i=1 fi(φ)
M

. (8)

Standard error of fi(φ) is calculated accordingly

Ef(φ) =

√∑M
i=1(fi(φ)− 〈f(φ)〉)2

M
. (9)

Calculation of 〈f(φ)〉 was done for M = 100 independent runs for δ = 1, δ = 0.5 and δ = 0.2,
and is shown in Fig. 3. Deviation is clearly depend on the size of the random walk step δ, and
decreases with the decreasing δ.
Pexp(φ) has both random and systematic error. Function < f(φ) > shows systematic

component while Ef(φ) shows random component. Ef(φ) depends on the total number of
runs and decreases as 1/

√
M (see Fig. 4). Systematic deviation < f(φ) > depends mainly on

the random walk step length δ and does not tend to 0 as M grows.
For the reason of clarity we restrict our analysis to a single value < f(0) > of < f(φ) >

at φ = 0 as a measure of deviation of Pexp from Pexact. Fig. 5 shows < f(0) > as a function
of random walk step length δ. This function shows decrease when δ decreases, but the way it
converges to zero could not be derived from the available data. As δ goes to 0 various errors
could become significant, e.g. rounding errors during calculation, and special care should be
taken. We leave this question open for the future research.

4. Discussions
In this paper we have estimated numerically systematic deviation of the first-passage probability
for the random walking particle to hit circle of radius R in the plane. We may conclude from
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Figure 3. Deviation 〈f(φ)〉 for the length of the random walk step δ = 1, δ = 0.5 and δ = 0.2
(marked in the figures) averaged over M = 100 groups of runs, see Exprs. (8,9).
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Figure 4. Ef(0) dependence on the number of groups M of the runs.

the results of our simulations, and especially from the analysis of the data presented in the
Figures 3,5, that the following form of the correction may take place

Pexp(φ) ≈ P (φ)
(

1−
(
δ

R

)α
cos(φ)

)
. (10)

We propose this expression is the first-order correction to the exact result of the Laplace
solution (5).
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Figure 5. Dependence of < f(0) > on the δ for M = 100 group of runs.

Future work, both simulations and analytical study, have to be done to check our proposal.
Our findings can be important not only for the simulation of random walk in plane, but also in
the study of boundary value problems, as well as in random growth fractals sumulations, e.g. in
DLA problem [10].
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